Una estrella exuberante de los medios de comunicación, presa de una enfermedad mortal, Stephen Hawking parece haber heredado de Einstein el aura de la fama y la reputación de genio. El hombre es celebrado quizás, según algunos científicos, desproporcionadamente. Su libro Historia del tiempo, un gran bestseller, probablemente más vendido que leído, se convirtió en película contra todo lo razonable, y sería agradable creer que la cosmología se ha convertido en una lectura imprescindible para tener conversación en las fiestas sociales.
La verdad es que Hawking no sólo resulta atractivo por los progresos intelectuales que ha hecho, sino por haberlos hecho sin la menor colaboración de su cuerpo, un armazón tan débil que Hawking podría parecer una forma única de inteligencia descorporeizada. Sin embargo, la imagen no encaja con el hombre, cuyo magnetismo deriva en parte de su brillantez, su coraje y su vulnerabilidad; y en parte de su ingenio rápido, su debilidad por los pósters de Marilyn Monroe y su molesta humanidad.
Nacido el 8 de enero de 1942, en el tricentenario de la muerte de Galileo (dato que él cita a menudo), se crió en las afueras de Londres, dentro de ese tipo de hogar excéntrico que parece pasar por normal en Inglaterra. Aquello era, según su hermano menor Edward, «un poco como los Munsters»: la familia tenía abejas en el sótano. El padre, que pasaba buena parte del tiempo en Africa, era un médico especializado en investigación, pero Hawking rechazó la biología y a los catorce años estaba decidido a dedicarse a las matemáticas y a la física. Tres años después se matriculó en Oxford, se dejó crecer el cabello y procedió a despachar el trabajo académico. Popular entre los estudiantes y con fama de ser lo bastante inteligente para no estudiar, jugaba al bridge por las noches y durante el día hacía de timonel a los colegas que remaban; en una foto tomada en 1961 aparece sentado en la proa de un bote, elegante con el traje blanco y el sombrero de paja, junto a una fila de ocho hombres más grandes y con camisetas a rayas. «Steve y yo teníamos que estar en el río todas las mañanas, seis días a la semana -recordaba más tarde el físico Gordon Berry-. Algo tenía que perder, y fueron concretamente los laboratorios experimentales.»
De manera que cuando Hawking hizo los exámenes finales previos a la licenciatura, después de varios años de holgazanear en clase, sus notas se situaron en la frontera entre el sobresaliente y el notable. La admisión en Cambridge, la escuela por él elegida, exigía el sobresaliente. Convocado ante los examinadores, explicó la situación con toda franqueza. «Si saco sobresaliente iré a Cambridge -les dijo-. Si saco notable me quedaré en Oxford. Conque confio en que me darán ustedes el sobresaliente.» Y se lo dieron.
En Cambridge empeoraron sus ocasionales torpezas y la tendencia a articular mal las palabras, que ya había aparecido en Oxford. Se le hizo difícil anudarse los zapatos. El padre se dio cuenta de esos problemas durante unas vacaciones de Navidad. Hawking, que aún no tenía veintiún años, fue a un especialista y pocas semanas después se le diagnosticaba una esclerosis lateral amiotrófica, también llamada enfermedad de Lou Gehrig. Es una enfermedad degenerativa que hace que los músculos -pero no la inteligencia- se atrofien. La enfermedad, que por regla general afecta a personas de edad, progresó rápidamente al principio. Habiéndole dado dos años de vida, Hawking se sumió en la depresión. «Tuve la sensación de ser algo así como un personaje trágico -declaró a un entrevistador-. Me puse a escuchar a Wagner.»
Dos años después las cosas empezaron a mejorar. Se casó con Jane Wilde, una estudiante de bachillerato que había conocido antes del diagnóstico, y comenzó a aplicarse a lo suyo. Su tutor en la tesis, Dennis Sciama, recomendó a Hawking que conociera al matemático Roger Penrose, dedicado por entonces a estudiar qué ocurría cuando una estrella agota el combustible y se colapsa. Penrose demostró que, al expandirse el universo regido por la teoría de la relatividad general de Einstein, una vez que una estrella se colapsa más allá de un determinado punto, inevitablemente tiene que convertirse en una singularidad, el hipotético punto situado en el interior de los agujeros negros donde la materia se comprime hasta alcanzar una infinita densidad y donde el espacio, el tiempo y las leyes de la física dejan de operar. Estimulado por esta idea, Hawking se lanzó a la investigación de las estrellas completamente colapsadas y encontró el trabajo de su vida. Como ha observado el escritor Dennis Overbye, «Costaba no pensar en Hawking como en su propia metáfora».
Se le ocurrió a Hawking que, si una estrella podía colapsarse hasta ser una singularidad, el proceso también debía ser posible en dirección contraria. Una singularidad puede ser tanto un principio como un final. En cuyo caso el universo, que se sabía que estaba expandiéndose, podría haber comenzado como una singularidad. Hawking pudo demostrar algo más que esto: un universo que se expande infinitamente, demostró, debe haber comenzado en una singularidad.
Pero ¿qué pasa si el universo no se expande infinitamente? ¿Qué pasa si contiene la suficiente masa para que la explosión vaya perdiendo velocidad y se invierta, para acabar en la fatal implosión llamada el Big Crunch? ¿También ese universo tendría que haber comenzado en una singularidad? La respuesta, dijo Hawking, era sí. En 1970 publicó, junto con Penrose, un artículo donde demostraban que el universo debía haber empezado como la singularidad del Big Bang.
Aquel noviembre, mientras se preparaba para acostarse («Mi incapacidad hace que sea un proceso lento, con lo que me tomaba mucho tiempo»), Hawking tuvo otra ocurrencia: puesto que nada podía escapar de un agujero negro, éste nunca puede disminuir. Sólo puede seguir igual o aumentar; no se puede dividir, no se puede encoger, no puede volar hecho pedazos. Con cada nueva porción de materia que ingiere, su masa aumenta y el horizonte de sucesos se hincha un poco mas.
Un investigador de Princeton, Jacob Bekenstein, recogió la idea. Bekenstein vio un paralelismo entre los agujeros negros y la idea de entropía, la medida del caos azaroso dentro de un sistema. Según la segunda ley de la termodinámica, la cantidad de desorden de un sistema cerrado aumenta necesariamente con el tiempo; la entropía, como los agujeros negros, siempre crece. Puesto que todo sistema tiene entropía, cada vez que un agujero negro se traga otra porción de materia su entropía debe aumentar al mismo tiempo que su horizonte de sucesos. El tamaño del agujero negro y su cantidad de entropía podrían ser equivalentes.
Hawking rechazó la analogía. Su objeción era que en cualquier sistema con una cierta cantidad de desorden, o entropía, también tendría que haber temperatura, y todo lo que tiene temperatura, por baja que sea, emite radiaciones. «Pero por su misma definición los agujeros negros son objetos que se supone que no emiten nada», escribió. De ahí, decidió, que la comparación tenga que estar equivocada. Además, Bekenstein lo irritaba.
Dos fisicos soviéticos convencieron a Hawking de que considerara la posibilidad de que los agujeros negros pudieran, pese a todo, emitir partículas. Cuando Hawking repitió los cálculos encontró, «para mi sorpresa y fastidio, que incluso los agujeros negros sin rotación debían, al parecer, crear y emitir partículas de manera regular». En las conferencias, Hawking proyectaba una transparencia contra la pared en la que se leía la sencilla frase: «Yo estaba equivocado».
Llegó a esta conclusión estudiando los agujeros negros desde la perspectiva de la mecánica cuántica y del principio de incertidumbre, para los que el espacio nunca está del todo vacío. Más bien está poblado por pares vagabundos de partículas «virtuales» -gemelos de materia y antimateria- que oscilan entre la existencia y la aniquilación, todo en una fracción de fracción de nanosegundo, demasiado rápido para poderse observar. Hawking propuso que si tales pares aparecieran cerca del horizonte de sucesos, la partícula de antimateria podría ser absorbida por el agujero negro, mientras la otra, poquísimo más lejos, podría pasar más allá del monstruo y caer en el universo cotidiano. La partícula parecería estar brotando del agujero negro. En cuyo caso, en palabras de Hawking, «Los agujeros negros no son tan negros».
La radiación del agujero negro no procede en realidad del agujero negro propiamente dicho sino de la capa de espacio que lo rodea. Sin embargo, la llamada radiación de Hawking tiene un peaje en el agujero negro, pues al entrar la partícula arremolinándose hacia la eternidad, como cae el agua por un sumidero, para nunca volver, su compañera viuda, que no puede aniquilarse en ausencia del socio, no tiene más remedio que convertirse en materia.
Lo cual exige energía. Esa energía tiene que proceder del agujero negro. Pero la energía, nos enseñó Einstein, no es más que otra forma de la masa, y viceversa. De manera que cuando un agujero negro da a la partícula virtual una pizca de energía, también pierde una minúscula cantidad de masa, lo cual supuestamente no puede ocurrir. El agujero negro se encoge un poco y radia más deprisa.
En último término los agujeros negros se evaporan mediante una fuerte explosión equivalente a mil millones de bombas de hidrógeno de un megatón. Esto no ocurrirá en ningún momento próximo; el agujero negro tipo tardará unos 1067 años en desvanecerse.
Hawking ha descrito este proceso de una forma aún más extravagante, basándose en la idea de que el principio de incertidumbre hace teóricamente posible que una partícula se mueva más deprisa que la luz. «Es baja la probabilidad de que se mueva durante mucha distancia a más velocidad que la luz, pero puede ir más deprisa que la luz durante el espacio suficiente, para salir del agujero negro, y luego seguir más despacio», dijo Hawking en una conferencia de 1991. Advirtió, no obstante, que esto es improbable que ocurra en los agujeros negros grandes. Incluso los agujeros negros cuya masa equivale a la del Sol son demasiado grandes, porque las partículas tendrían que sobrepasar la velocidad de la luz durante kilómetros antes de regresar al universo ordinario.
Pero ¿qué pasa con los agujeros negros excepcionalmente pequeños? Esta es otra historia. Hawking propone la posibilidad de que cuando el universo era joven y mucho más denso que ahora se crearan los agujeros negros primordiales, bocaditos del tamaño de una montaña. Estos miniagujeros negros, artefactos de la creación, no debieron tardar mucho en evaporarse. Hawking imagina que deberían estar evaporándose precisamente ahora, desapareciendo en explosiones de rayos gamma. Los científicos, muchos de los cuales dudan de la existencia de estos monstruos en miniatura, todavía están por detectar las señales delato-ras de tales acontecimientos. Lo que no significa que no vaya a haberlas.
De manera que la idea de Hawking de que los agujeros negros no podían hacerse más pequeños quedó refutada por el descubrimiento de la radiación de Hawking, que demuestra que los agujeros negros pueden desaparecer por completo. Algo similar ocurrió con sus ideas sobre la singularidad del principio del tiempo. Se puso a reconsiderarla. La relatividad general, es cierto, exige la existencia de singularidades; pero en el punto de la singularidad, donde se comprime la materia hasta una densidad infinita, la relatividad general quiebra. Tal vez la mecánica cuántica, que opera con la incertidumbre, pueda sostener que la singularidad del Big Bang es algo que alguna vez ha existido.
Hawking decidió que su anterior idea de que el universo comenzó con una singularidad estaba equivocada. Tal vez el universo espacio-temporal no comenzase de ningún modo. El argumento viene a ser algo así: si nos acercamos lo bastante al principio del universo, el tiempo no existe; si el tiempo no existe, no hay un momento de la creación, no hay momento del génesis, no hay momento de ninguna clase. Sin tiempo, no hay tiempo.
Por desgracia, los mortales ordinarios tienen dificultades para pensar así. Hawking señala que en cualquier caso el universo Parecería empezar y acabar en una singularidad. («Así pues, en cierto sentido todos seguimos estando condenados», escribe Hawking.) Pero en otro sentido -un sentido sumamente conceptual que implica muchos posibles universos a la vez que un concepto matemático llamado «tiempo imaginario»- el tiempo es una especie de círculo que no tiene principio ni final. En esta propuesta «sin límites» Hawking compara, de forma característica, el universo con la Tierra. Se parta de donde se parta, nunca se acaba. Nunca empieza. De manera similar, «Preguntarse que ocurrió antes del Big Bang es como preguntarse por un punto situado un kilómetro al norte del Polo Norte -escribe Hawking-. La magnitud que medimos como tiempo tuvo un principio, pero eso no significa que el espacio-tiempo tenga un límite, lo mismo que la superficie de la Tierra no tiene ningún límite en el Polo Norte, por lo menos eso lo que se me ha dicho; personalmente yo no he estado nunca allí».
Hawking también especuló sobre universos bebé, subproductos del modelo inflacionario del universo debido a Alan Guth, según el cual durante una fugaz fracción de un instante el universo se infló desmesuradamente. Si este proceso creó pequeñas hinchazones dentro de la fábrica del espacio-tiempo, esas pequeñas colinas y valles bien pudieron crecer, inflándose en universos paralelos conectados al nuestro por agujeros de gusano, túneles cuánticos que atraviesan el espacio-tiempo. En cuyo caso nuestro universo podría ser uno entre muchos.
A lo largo de todo esto Hawking ha proseguido su trabajo a pesar del devastador deterioro físico. En 1969, dos años después de nacer el primero de sus hijos, ya no podía arreglárselas con un bastón y se vio obligado a usar silla de ruedas. Al final ha llegado a depender de los cuidados constantes de una enfermera y de estudiantes graduados que sepan interpretar todos sus vacilantes farfulleos. En 1979, al ser elegido profesor de la cátedra Lucasiana de Matemáticas de Cambridge, puesto que en su tiempo ocupó sir Isaac Newton, estampó su firma por última vez. Su discurso resultó casi incomprensible; luego, durante una traqueotomía de urgencia, en 1985, perdió por completo la facultad de hablar. Se le devolvió con un sintetizador de voz computerizado que lleva en la silla de ruedas.
Nada de esto lo ha salvado de las crisis normales que pesan sobre la carne. En 1990, en un divorcio singularmente poco aireado, se separó de su esposa Jane. Y una noche lluviosa de marzo de 1991 se equivocó al calibrar la distancia de los vehículos que se aproximaban al cruzar la calle y acabó «en la calzada, con las piernas sobre los restos de la silla de ruedas». En el accidente se rompió el brazo, se hizo un corte en la cabeza (que necesitó trece puntos) y se produjeron daños irremediables en el sistema computerizado que le permite hablar. A pesar de esto, conserva la capacidad de sonreír y continúa llevando adelante, en su trabajo intelectual si no en la vida personal, el mandato que sir Arthur Eddington dio en una conferencia, en 1928: «Les pido que miren en ambos sentidos -dijo Eddington-, pues el camino que conduce a saber algo de las estrellas pasa por el átomo; importantes conocimientos sobre el átomo se han alcanzado a través de las estrellas».
En el documental sobre Hawking dirigido por Errol Morris, la hermana de Hawking, Mary, dice: «Mi padre era muy bueno en las discusiones teológicas, de modo que todos hablábamos de teología». Esta parece ser una costumbre que Hawking no ha perdido nunca. En sus escritos Hawking vuelve repetida y ambivalentemente sobre el problema de, dicho en palabras de su hermana May, «la existencia de Dios o lo contrario». A menudo se burla de la idea. Escribe con sentido del humor sobre sus experiencias en el Vaticano, donde asistió a un congreso de cosmología en 1981: «Al final del congreso los participantes tenían concedida una audiencia con el papa. Éste nos dijo que estaba muy bien estudiar la evolución del universo después del Big Bang, pero que debiéramos investigar sobre el Big Bang en cuanto tal, porque aquel fue el momento de la creación y por lo tanto obra de Dios. Me alegré de que no supiera el tema de la conferencia que yo acababa de dar: la posibilidad de que el espacio-tiempo fuese finito pero no tuviera ninguna clase de límites, lo que significa que no tuvo principio, no existió el momento de la creación. No tenía ganas yo de compartir la suerte de Galileo».
Pero al mismo tiempo Hawking escribe que alguna vez se encontrará la teoría unificada que combine los principios de la relatividad con los de la mecánica cuántica: «A su tiempo los grandes principios serán comprensibles para todo el mundo, no sólo para unos pocos científicos. Entonces todos, los filósofos, los científicos y la gente normal y corriente, podrán tomar parte en la discusión sobre el tema de por qué existimos nosotros y el universo. Si encontramos la respuesta a esta pregunta, será el definitivo triunfo de la razón humana: pues entonces conoceremos el pensamiento de Dios».
2 comentarios:
muy buen articulo, gracias por publicar mi peticion,en su caso eso de que detras de todo gran hombre hay una gran mujer ... no se cumple, por cierto ¿sabes si cuando aparecio en los simpsons se "doblo asi mismo?
¡¡Lo prometido era deuda!! Hubo una gran mujer... hasta que Stephen la abandonó por su enfermera. Cosas de la vida.
Acerca del capítulo de Los Simpsons... no tengo ni idea, pero apostaría a que no, no veo a Hawking en esos "menesteres" ;-)
Publicar un comentario